International Conference in Honor of P.L. Hsu's 100th Brithday

Peking University, Beijing
Session Stat3 on 7 July 2010, 2:00-2:30 pm

Bayesian Inference Is a Two-way Street Kai Wang Ng (kaing@hku.hk)
Department of Statistics \& Actuarial Science The University of Hong Kong

！

An old－time scholar learns for［satisfying］ oneself．［Scholarship］
A later－day scholar learns for［satisfying］ others．［Entrepreneurship］

本人意見：

先為己，然後為人之學者，至善者也。

My academic idol is one who puts scholarship before entrepreneurship．

Professor P.L. Hsu was well know for his

- Spirit: scholarship before entrepreneurship
- Practice: go through the statement and proof of every theorem he needed or quoted, and provide a simpler derivation if possible

Reading and hearing about Professor Hsu's virtues, I must confess that I have not been able to follow. Only occasionally have I tried his practice.

In honor of Professor Hsu in this occasion, thanks to the organizers for inviting me, I would like to share one of my experiences of trying out his practice, which led to
an unexpected journey - reversing the Bayes' process of inference.

1. What's the problem?

Missing (augmented) Data Problem: Complete data (Y,Z), but Z not available either missing or strategically augmented.

Frequentist: MLE of θ by EM algorithm

- Folklore version: (may not ascend likelihood) For an initial $\theta^{(0)}$, the "E-step" finds the conditional mean $E\left(Z \mid y, \theta^{(0)}\right)=z^{(0)}$ and the "M-step" finds the new MLE

$$
\theta^{(1)}=\arg \max \left\{\log \left(\mathbf{y}, \mathbf{z}^{(0)} \mid \theta\right)\right\} .
$$

- Dempster et al. (1977) (ascending): For an initial $\theta^{(0)}$, determine function

$$
\mathrm{Q}\left(\theta \mid \theta^{(0)}\right)=\mathrm{E}\left(\log (\mathrm{y}, \mathrm{Z} \mid \theta) \mid \mathrm{y}, \theta^{(0)}\right) .
$$

Then find the new MLE (M-step)

$$
\theta^{(1)}=\arg \max \mathrm{Q}\left(\theta \mid \theta^{(0)}\right)
$$

- Meng \& Rubin (1993) ECM: [Bioka] The M-step replaced by a number of conditional maximization steps.

In Bayesian analysis of (Y, Z), where Z is not available, the question is to find $\pi(\theta \mid y)$, based on $p(\theta \mid y, z) \& f(z \mid y, \theta)$.

1. Tanner and Wong (1987, JASA, 5 discussants)
Data Augmentation ($D A$) by successive substitution
with discussions respectively by Dempster, Morris, Rubin, Haberman, and O'Hagan
2. Schervish \& Carlin (1992, JCGS)

Convergence rate of $D A$ algorithm
3. Gelfand \& Smith (1990, JASA)

- construction of pdf using Gibbs sampler
- "Extend" without convergence conditions $D A$ algorithm to 3 groups

4. Liu, Wong and Kong (1994, Biometrika. 1995, JRSSB)
Covariance structure of Gibbs and $D A$
5. M. Tanner (3rd Printing of 1st Ed. in 1993; 2nd Ed. in 1994 or 1995; 3rd Ed. in 1996.) "Tools for Statistical Inference ", Springer

Tanner \& Wong, 1987, JASA; Tanner, 1993-1996: Successive substitution

To find $\pi(\theta \mid y)$ based on $p(\theta \mid y, z), f(z \mid \theta, y)$:

$$
\begin{aligned}
& g(\theta)=Z_{Z}^{Z} \mathbb{C}^{Z} f_{1}(\theta \mid z) f_{2}(z \mid \varphi) d z^{\underline{a}} g(\varphi) d \varphi \\
& =\mathrm{K}(\theta, \varphi) \mathrm{g}(\varphi) \mathrm{d} \varphi .
\end{aligned}
$$

Successive substitution to approximate $g(\theta)$:

$$
g_{k+1}(\theta)=K(\theta, \varphi) g_{k}(\varphi) d \varphi
$$

Sufficient conditions for $g_{k} \rightarrow g$ as $k \rightarrow \infty$:
(i) $K(\theta, \varphi)$ is uniformly bounded
(ii) $K(\theta, \varphi)$ is equi-continuous in θ
(iii) $\forall \theta_{0} \in \Theta \exists$ open neigh. U s.t.

$$
K(\theta, \varphi)>0 \quad \forall \theta, \varphi \in U .
$$

(iv) Starting with g_{0} satisfying: $\sup _{\theta} \frac{g_{o}(\theta)}{g(\theta)}<\infty$.

Data Augmentation by Monte Carlo
Each substitution of

$$
g_{k+1}(\theta)=^{Z^{1 / 2}} f_{1}(\theta \mid z) f_{2}(z \mid \varphi) d z \quad g_{k}(\varphi) d \varphi
$$

is done the by Monte Carlo integration:
(a) "Imputation Step"
(a1) Draw $\theta_{1}, \ldots, \theta_{M}$ from $g_{k}(\theta)$
(a2) For each θ_{1}, draw $z_{i j} \sim f_{2}\left(z \mid \theta_{1}\right), j=$ $1, \ldots, N$.
(b) "Posterior Step"

$$
g_{k+1}(\theta)=\frac{1}{N M}_{i=1 j=1}^{X^{M} X^{N}} f_{1}\left(\theta \mid z_{i j}\right)
$$

When the two functions, $\mathbf{g}_{\mathbf{k}}(\cdot)$ and $\mathbf{g}_{\mathbf{k}+1}(\cdot)$, are close enough, the procedure terminates.

2. How did I get interested in?

- 1994: Prof. Wing H. Wong (COPSS Award Winner 1993) was Head of Statistics, CUHK
- Tanner's 1st Ed. (3rd printing) was a reference in a course at HKU (3rd Ed. in 1996)
- Prof. Per Mykland from Chicago told me that the topic was the hottest in USA then
- First local conference ever by HKSS, mainly due to efforts of Prof. Wing Wong.
- My past interest in Fixed-Point Theorems: (1969) "Generalizations of Some Fixed Point Theorems In Metric Spaces." M.Sc. Thesis, University of Alberta.
(1970) "A Remark on Contractive Mappings",

Canadian Mathematical Bulletin 13, 111-113.

- Aim: To replace the sufficient conditions of convergence by practicable ones.
- Approach: Suggest convenient distance measures, so that the integral operator is a contractive mapping on the space of densities in a particular application.

3. Why to reverse Bayes' process?

In all Bayesian Missing Data Problems, where Z is the missing part, the aim is to find $\pi(\theta \mid y)$, given $p(\theta \mid y, z) \& f(z \mid y, \theta)$. Since y is a given constant throughout, like a parameter indexing the family of joint distributions for (Z, θ), we may drop y in all 3 densities in Tanner \& Wong's integral equation. In other words, the aim is equivalent to reversing the Bayes process:
[Given Likelihood $f(z \mid \theta)$]

Bayes Formula

prior

$\pi(\theta)$

posterior $p(\theta \mid z)$

Inversion of Bayes Formula

"We Bayesians don't need IBF ."
"You've missed the forest for the trees."

中國俗語有云：
當局者迷旁觀者清
Stakeholders are entrenched
Bystanders are enlightened
穌東坡〈題西林壁〉：
橫看成領側成峰，
遠近高低各不同。
不識盧山真面目，
只縁身在此山中。
Being inside the mountains Can＇t tell the outset for certain

4. Back to basics (1995)

So I went back to the basic identity

$$
\begin{equation*}
\mathrm{f}_{\mathrm{Z}}(\mathrm{z}) / \pi(\theta)=\mathrm{f}(\mathrm{z} \mid \theta) / \mathrm{p}(\theta \mid \mathrm{z}) \tag{1}
\end{equation*}
$$

where (θ, z) is in joint support $\mathcal{S}(\theta, Z)$. For any θ where $\mathcal{S}(Z \mid \theta)=\mathcal{S}(Z)$, integration on both sides and re-arranging reciprocals give
) -1
$\pi(\theta)=$

$$
\begin{equation*}
\mathrm{f}(\mathrm{z} \mid \theta) / \mathrm{p}(\theta \mid \mathrm{z}) \mathrm{dz} \tag{2}
\end{equation*}
$$

$$
\mathcal{S}(Z)
$$

which is called the point-wise IBF for θ. If there exists z_{0} where $\mathcal{S}\left(\theta \mid \mathrm{z}_{0}\right)=\mathcal{S}(\theta)$, we have
Z
hence the function-wise IBF for all θ,

$$
\begin{equation*}
\underset{\mathcal{S}(\theta)}{\frac{p\left(\theta \mid \mathbf{z}_{0}\right)}{f\left(\mathbf{z}_{0} \mid \theta\right)} d \theta \quad \frac{p\left(\theta \mid \mathbf{z}_{0}\right)}{f\left(\mathbf{z}_{0} \mid \theta\right)}, ~} \tag{4}
\end{equation*}
$$

which is the same for any such Z_{0}.

Meaning to Tanner $_{Z}^{1 / 2}$ \& Wong integral ${ }_{3 / 4}$ equ.
$\pi(\theta \mid y)=p(\theta \mid y, z) \quad f(z \mid y, \varphi) \pi(\varphi \mid y) d \varphi \quad d z(*)$
As $\mathcal{S}(\mathrm{Z} \mid \theta)=\mathcal{S}(\mathrm{Z}) \forall \theta$ and $\mathcal{S}(\theta \mid \mathrm{Z})=\mathcal{S}(\theta) \forall \mathrm{z}_{0}$, it has explicit solution in dual forms, $1 / 2$

$$
\frac{\mathrm{f}(\mathrm{z} \mid \mathrm{y}, \theta)}{\mathrm{p}(\theta \mid \mathrm{y}, \mathrm{z})} \mathrm{dz}
$$

$\pi(\theta \mid y)=\frac{f(z \mid y, \theta)}{p(\theta \mid y, z)} d z$ $3 / 4-1$
$1 / 27$
where in the second form $(* * *)$, z can be any value of Z. Check: substitute $\pi(\varphi \mid y)$ into RHT of (*) with the second form $(* * *)$, then the inside integral gives the predictive density $f_{Z}(z \mid y)$, and hence the outside integral returns $\pi(\theta \mid y)$.

> "All things are DIFFICULT before they are EASY."

Thomas Fuller : Gnomologia

Thomas Fuller in Gnomologia：

 ＂All things are DIFFICULT before they are EASY．＂中國俗語有云：
踏破鐵鞋無覓處
得來全不費功夫

辛葉疾〈青玉案〉：

Point-wise meaning of prior density

For a given value of θ,

(1) either $\mathcal{S}(Z \mid \theta)=\mathcal{S}(Z)$,
(2) or $\mathcal{S}(Z \mid \theta) \subset \mathcal{S}(Z)$, having unconditional probability $\mathrm{P}_{\mathrm{Z}}(\mathcal{S}(\mathrm{Z} \mid \theta))=\alpha<1$.

Under repeated sampling of data given a θ, the prior density at the θ equals

- the harmonic mean of posterior density at θ in case of (1)
- α times the harmonic mean of posterior density at θ in case of (2)

Function-wise meanings of prior density

$$
\begin{equation*}
\mathrm{I}_{\mathcal{S}(\theta)} \frac{\mathrm{p}\left(\theta \mid \mathbf{z}_{0}\right)}{\mathrm{f}\left(\mathbf{z}_{0} \mid \theta\right)} \mathrm{d} \theta{ }^{\text {) }} \frac{\mathrm{p}\left(\theta \mid \mathbf{z}_{0}\right)}{\mathrm{f}\left(\mathbf{z}_{0} \mid \theta\right)} \tag{4}
\end{equation*}
$$

- No need for $\mathcal{S}(Z, \theta)=\mathcal{S}(Z) \times \mathcal{S}(\theta)$, only one z_{0} such that $\mathcal{S}\left(\theta \mid \mathrm{z}_{0}\right)=\mathcal{S}(\theta)$ can determine the whole function $\pi(\cdot)$.
- If numerical integration is needed, it's done only on $\mathcal{S}\left(\theta \mid \mathbf{z}_{0}\right)=\mathcal{S}(\theta)$.
- Without the integral, sampling from $\pi(\cdot)$ can be done by Rejection Sampling, Adaptive Rejection Sampling (Gilks \& Wild, 1992), Metropolis Sampling, Metropolis-Hastings Sampling, and Rubin's SIR method $(1987,1988)$.
- It can assist the construction of highest density regions/intervals of θ
- It can serve as a benchmark for checking convergence of MCMC sampling by comparing $\log (\pi(\cdot))$ with the simulated counterpart.

5. Further back to basics (1996)

What about haphazard patterns of positivity (like the shaded areas below), where even the function-wise IBF cannot handle?

Bayes' Formula originated in event form, right? Go back further. Other forms shall follow.

Bayes' formula:
Let $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \cdots, \mathrm{H}_{\mathrm{m}}\right\}$ and $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{\mathrm{n}}\right\}$ be two distinct partitions of the sample space. For $j=1, \cdots, m, i=1, \cdots, n$,

$$
P\left(H_{j} \mid A_{i}\right)=P \frac{P\left(A_{i} \mid H_{j}\right) P\left(H_{j}\right)}{\mathrm{m}_{\mathrm{k}=1} \mathrm{P}\left(\mathrm{~A}_{\mathrm{i}} \mid \mathrm{H}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{k}}\right)}
$$

Put all probabilities in a combined two-way table, where $P_{i j}=P\left(H_{j} \mid A_{i}\right), L_{i j}=P\left(A_{i} \mid H_{j}\right), p_{j}=$ $P\left(H_{j}\right)$ and $q=P\left(A_{i}\right):$

$\mathbf{P}\left(\mathbf{A}_{i} \mid \mathbf{H}_{j}\right) \quad \mathbf{P}\left(\mathbf{H}_{j} \mid \mathbf{A}_{i}\right)$	H_{1}	.	H_{j}	\ldots	H_{m}	$\mathrm{P}\left(\mathrm{A}_{i}\right)$
A_{1}	L_{11}		$\mathrm{L}_{1 j}$		$\mathrm{L}_{1 m}$	q_{1}
:	:	:	:	:	:	:
A_{i}	$\mathrm{L}_{i 1}$		$\mathrm{L}_{i j}$		$\mathrm{L}_{i m}$	q
:	:	\vdots	:	:	:	!
A_{n}	$\mathrm{L}_{n 1}$		$\mathbf{L}_{n j}$		$\mathrm{L}_{n m}$	q
$\mathbf{P}\left(\mathrm{H}_{j}\right)$	p_{1}	\ldots	p_{j}	\ldots	p_{m}	1

IBF is to find the values on one margin (and as a result, the values on the other), given all pairs of values in the cells.
$P_{i j}$ and $L_{i j}$ are simultaneously both zero if and only if $A_{i} \cap H_{j}=\emptyset$ and both positive if and only if $A_{i} \cap H_{j} \neq \emptyset$. Thus the ratio $r_{i j}=P_{i j} / L_{i j}$ is well-defined in at least one cell in each row \& column, resulting in a system of equations,

$$
\mathrm{p} / \mathrm{q}=\mathrm{r}_{\mathrm{ij}} \equiv \mathrm{P}_{\mathrm{ij}} / \mathrm{L}_{\mathrm{ij}}, \quad \mathrm{i}=1,2, \cdots, \mathrm{n} ; \mathrm{j}=1, \cdots, \mathrm{~m} .
$$

for the $m_{p} n_{m}-2$ effectivepunknowns, p_{p} and q such that ${\underset{j}{j=1}}_{m}^{p}=1$ and ${ }_{i=1}^{n} q=1$. The number of equations is just the number of defined $r_{i j}$. In view of the previous IBF, we need only
consider the case where r_{ij} is undefined in at least one cell in each row \& column.

This can be done numerically, But we aim at an algebraic solution for inspiration to PDF setting. The underlying idea is the simple fact:

- A set of positive numbers are uniquely determined by their relative proportions and their total. If only the proportions are known, but not the total, there are infinitely many solutions.

In the first condition: the numbers are completely proportionable; and in the second condition, the numbers are proportionable.
The following are facts for $\left\{p_{j}\right\}$ (also for $\{q\}$):
(a) Given $p_{*},\left(p_{l} / p_{j *}, \cdots, p_{\left(j^{*}-1\right)} / p_{j^{*}}, 1, p_{\left(j^{*}+1\right)} / p_{j *}\right.$, $\left.\cdots, p_{m} / p_{*}\right)$, we have

$$
\mathrm{p}_{\mathrm{g}}=\frac{\mathrm{p}_{\mathrm{g}}}{\mathrm{p}_{*}}{ }_{j=1}^{\mathrm{X}^{m}} \frac{\mathrm{p}_{\mathrm{g}}}{\mathrm{p}_{*}}, \quad j=1,2, \cdots, m
$$

(b) Given all the consecutive ratios $\left(p_{1} / p_{2}, p_{2} / p_{3}, \cdots\right.$, P_{m-1} / P_{m}), we can obtain the proportions vs. a common denominator by chained multiplications; e.g.,

$$
\frac{p_{1}}{p_{m}}={ }_{j=1}^{P_{1}-1} \frac{P^{\prime}}{p_{+1}}, \frac{p_{2}}{p_{m}}={ }_{j=2}^{P^{-1}} \frac{p_{j}}{p_{+1}}, \cdots, \frac{p_{m-1}}{p_{m}}={ }_{j=m-1}^{P^{-1}} \frac{P_{j}}{p_{j+1}} .
$$

(c) If in a particular row i, a subset of the ratios, $\mathrm{r}_{\mathrm{ij}_{1}}, \mathrm{r}_{\mathrm{ij}_{2}}, \cdots, \mathrm{r}_{\mathrm{ij}_{\mathrm{k}}}$, are defined, then $\mathrm{p}_{1}, \mathrm{p}_{2}, \cdots$, and P_{k} are proportionable in row i; for example, the proportions relative to $\rho_{i_{k}}$ are:

$$
\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{k}}}=\frac{r_{i j_{1}}}{r_{i \mathrm{ij}_{k}}}, \frac{\mathrm{P}_{2}}{\mathrm{P}_{\mathrm{jk}}}=\frac{r_{i j_{2}}}{r_{i \mathrm{ij}_{k}}}, \cdots, \frac{\mathrm{P}_{\mathrm{k}-1}}{\mathrm{P}_{\mathrm{jk}}}=\frac{r_{i j_{k-1}}}{r_{i \mathrm{ij}_{k}}}
$$

Notation: $\left[\mathrm{p}_{1}(\mathrm{i}) \mathrm{p}_{2}(\mathrm{i}) \cdots(\mathrm{i}) \mathrm{p}_{\mathrm{k}}\right] ;\left[\mathrm{j}_{1}(\mathrm{i}) \mathrm{j}_{2}(\mathrm{i}) \cdots(\mathrm{i}) \mathrm{j}_{\mathrm{k}}\right]$.

Conclusions:

- Let Let $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ be any permutation of $\left\{p_{9}\right\}$. If p_{1} and ρ_{2} are proportionable in row $\mathrm{i}_{1}, \mathrm{p}_{2}$ and p_{3} proportionable in row $\mathrm{i}_{2}, \cdots, \mathrm{P}_{(\mathrm{m}-1)}$ and P_{m} proportionable in row $\mathrm{i}_{(\mathrm{m}-1)}$, or in notation,

$$
\left[\mathbf{p}_{1}\left(\mathbf{i}_{1}\right) \mathbf{p}_{2}\left(\mathbf{i}_{2}\right) \mathbf{p}_{3}\left(\mathbf{i}_{3}\right) \cdots \mathbf{p}_{(\mathrm{m}-1)}\left(\mathbf{i}_{(\mathrm{m}-1)}\right) \mathbf{p}_{\mathrm{m}}\right]
$$

then $\left\{p_{f}\right\}$ are completely proportionable.

- The solution for $\left\{p_{\}}\right\}$and $\{q\}$ is not unique if the following situation happens for both $\{p\}$ and $\{q\}$:
There are two or more subsets of $\{p\}$ (or $\{q\}$) whose union equals the whole set of $\{p\}$ (or $\{q\}$) and which satisfy two conditions: (i) each member of one subset is found not proportionable with any member of another subset and (ii) members within the same subset are proportionable unless the subset is a singleton.

Example (IBF for haphazard patterns)

Only well-defined $r_{i j}=P_{i j} / L_{i j}$ are shown. We need only demonstrate finding $\left\{p_{j}\right\}$.

	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	Notation	Available proportions
q_{1}				r_{14}		r_{16}	[4(1)6]	$p_{6} / p_{4}=r_{16} / r_{14}$
q_{2}		r_{22}	r_{23}		r_{25}		[2(2)3(2)5]	$p_{2} / p_{5}=r_{22} / r_{25}$,
q_{3}						r_{36}		$\mathrm{p}_{3} / \mathrm{p}_{5}=\mathrm{r}_{23} / \mathrm{r}_{25}$
q_{1}	r_{41}				r_{45}		[1(4)5]	$p_{1} / p_{5}=r_{41} / r_{45}$
q			r_{53}					
q_{5}		r_{62}			r_{65}		[2(6)5]	Done in row 2
q	r_{71}			r_{74}			[1(7)4]	$p_{4} / p_{5}=\left(r_{74} / r_{71}\right)\left(p_{1} / p_{5}\right)$,
								$p_{6} / p_{5}=\left(p_{6} / p_{4}\right)\left(p_{4} / p_{5}\right)$.

Note: Consider the table without the last row. Then $\left\{p_{2}, p_{3}, p_{5}, p_{1}\right\}$ and $\left\{p_{4}, p_{6}\right\}$ are two distinct proportionable subsets, each having no member proportionable with any member of the other subset. There is one solution for $\left\{p_{f}\right\}$ associated with each a where $0<a<1$:

$$
p_{2}+p_{3}+p_{5}+p_{1}=a, \quad p_{4}+p_{6}=1-a
$$

A similar situation for $\left\{q_{2}, q_{1}, q_{k}, q_{1}\right\}$ and $\left\{q_{1}, q_{k}\right\}$. Hence IBF has infinitely many solutions here.

Let $r(\theta, z)=p(\theta \mid z) / f(z \mid \theta)$.
$\forall \theta \in \mathcal{S}\left(\theta \mid z_{1}\right): \pi(\theta) / \pi\left(\theta_{0}\right)=r\left(\theta, z_{1}\right) / r\left(\theta_{0}\right.$

Let $Q\left(\theta, \theta_{i}, z_{i}\right)=r\left(\theta, z_{i}\right) / r\left(\theta, z_{i}\right)$. Then $\forall \theta \in \mathcal{S}\left(\theta \mid z_{i}\right), i=1,2: \pi(\theta) / \pi\left(\theta_{1}\right)=Q\left(\theta, \theta_{1}, z_{i}\right)$.
$\forall \theta \in \mathcal{S}\left(\theta \mid z_{\mathrm{i}}\right), \mathbf{i}=2,3: \pi(\theta) / \pi\left(\theta_{2}\right)=\mathrm{Q}\left(\theta, \theta_{2}, \mathbf{z}_{\mathrm{i}}\right)$.
So $\forall \theta \in \mathcal{S}\left(\theta \mid \mathbf{z}_{3}\right)$:
$\frac{\pi(\theta)}{\pi\left(\theta_{1}\right)}=\frac{\pi(\theta)}{\pi\left(\theta_{2}\right)} \times \frac{\pi\left(\theta_{2}\right)}{\Pi\left(\theta_{1}\right)}=\mathbf{Q}\left(\theta, \theta_{2}, \mathbf{z}_{3}\right) \times\left[\mathbf{Q}\left(\theta, \theta_{1}, z_{2}\right) / Q\left(\theta, \theta_{2}, z_{2}\right)\right]$.
$\forall \theta \in \mathcal{S}\left(\theta \mid z_{i}\right), \mathbf{i}=3,4: \boldsymbol{\pi}(\theta) / \pi\left(\theta_{3}\right)=\mathbf{Q}\left(\theta, \theta_{3}, z_{i}\right)$.
And $\forall \theta \in \mathcal{S}\left(\theta \mid z_{4}\right): \quad \frac{\pi(\theta)}{\pi\left(\theta_{1}\right)}=\frac{\pi(\theta)}{\pi\left(\theta_{3}\right)} \times \frac{\pi\left(\theta_{3}\right)}{\pi\left(\theta_{2}\right)} \times \frac{\pi\left(\theta_{2}\right)}{\pi\left(\theta_{1}\right)}$

$$
=\mathrm{Q}\left(\theta, \theta_{3}, z_{4}\right) \times \frac{\mathrm{Q}\left(\theta, \theta_{2}, z_{3}\right)}{Q\left(\theta, \theta_{3}, z_{3}\right)} \times \frac{\mathrm{Q}\left(\theta, \theta_{1}, z_{2}\right)}{Q\left(\theta, \theta_{2}, z_{2}\right)} .
$$

Hence we need only find $\pi\left(\theta_{1}\right)$, which can be obtained by integrating $\pi(\theta) / \pi\left(\theta_{1}\right)$ over the 4 subsets of conditional supports, $\mathcal{S}^{*}\left(\theta \mid \mathrm{z}_{\mathrm{i}}\right) \subset \mathcal{S}\left(\theta \mid \mathrm{z}_{\mathrm{i}}\right)$ so that $\cup_{i=1}^{4} \mathcal{S}^{*}\left(\theta \mid z_{i}\right)=\mathcal{R}(\theta)$:

The figure is obtained from the previous one by moving the three constituent regions of joint support away from each other, so that they are no longer projection-connected. In this case there are infinitely many IBF solutions. Each solution corresponds to a possible set of unconditional probabilities on the 3 regions, the information about which cannot be recovered from the two families of conditional PDF.

Many thanks to those who quietly showed encouragements and support in the last 15 years and to those who drew my attention to the story of The Emperor's New Coat and to the following sayings:
"All great truths begin as blasphemies."

- George Bernard Shaw
"It requires a very unusual mind to undertake the analysis of the obvious."
- Alfred N. Whitehead
"A scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die and a new generation grows up that is familiar with it."
- Max Planck

Ming T. Tan Guo-Liaing Tian Kai Wang Ng

CRC Press

themestrancictrap
A CHAPMAN \& HALL: BOOK
Comsrighted Material

Compighted Material

Statistics

Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative

Computatior $\quad r$. ${ }^{2}$ sents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the authors in 1995. Applying the Bayesian approach to important real-worid problems, the authors focus on exact numerical solutions, a conditional sampling approach via data augmentation. and a noniterative sampling approach via EM-type aigorithms.

After introducing the missing data problems, Bayesian approach, and posterior computation, the book succinctly describes EM-type algorithms, Monte Carlo simulation, numerical techniques, and optimization methods. It then gives exact posterior solutions for problems, such as nonresponses in surveys and cross-over trials with missing values. It also provides noniterative posterior sampling solutions for problems, such as contingency tables with supplemental margins, aggregated responses in surveys, zero-inflated Poisson, capture-recapture models, mixed

```
effects modt,
```

 \& 路

